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What?
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“Beyond the WIMP lalalalalalala”
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Beyond the WIMP
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Hitoshi @ BCTP, Tahoe 2015

Go lighter!
keV-GeV



Beyond the WIMP
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Theory:
Lots of activity in recent years 

Asymmetric dark matter
SIMPs
Forbidden dark matter 

[YH, Kuflik, Volansky, Wacker, 2014]

[Griest, Seckel, 1991; D’Agnolo, Ruderman, 2015]

[Kaplan, Luty, Zurek, 2009]e.g.:



Beyond the WIMP
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mass
[GeV]

Experiment:
direct detection 

of keV-GeV 
dark matter 

via superconductors



How?
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Direct Detection
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What’s going on?



Direct Detection

• Looking at nuclear recoils: think billiard balls
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Direct Detection

• Looking at nuclear recoils: think billiard balls
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DM DM

N

N

light dark matter 
doesn’t have enough punch 

to kick the heavy nuclei



Direct Detection

• Light dark matter: scatter off electrons!
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Direct Detection

• Light dark matter: scatter off electrons!
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electron ionization, 
semiconductors

Kinetic energy available:

DM

Xenon: ~12 eV Ge, Si: ~eV 

[Essig et al 2012;
Graham et al 2012;

Xenon10 data: 
Essig et al 2012]

conduction

valence

E
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Direct Detection

• Light dark matter: scatter off electrons!
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electron ionization, 
semiconductors

Kinetic energy available:

?



Direct Detection

• Light dark matter: scatter off electrons!
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electron ionization, 
semiconductors

Kinetic energy available:

Superconductors!

[YH, Zhao and Zurek, PRL 2015;
YH, Pyle, Zhao and Zurek, JHEP 2016]



Kinematics

Target at rest:

• Target = N:

Even for                , only                                        detectable

• Target = e: 

Even                    won’t allow sensitivity to keV DM

YH @ sub-eV, Dec. 2016

[seminconductors]



for                        !

• : Target can fully stop the DM 

Target w/ velocity:

• : DM barely affected

Kinematics
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Target w/ velocity:

Kinematics
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Fermi-degenerate materials 
have velocity!

Focus on superconductor targets.



Superconductor Cheat Sheet

• Ground state of superconductor = Cooper pairs;

Binding energy (gap)                   

• The idea:

DM scatters with Cooper pairs, deposits enough energy, 

breaks Cooper pairs, creating excitations  detect

YH @ sub-eV, Dec. 2016

e

DM

excitation

DM

e excitation



Superconductor Cheat Sheet

• For energies exceeding the gap, scatter with free electrons in 
a Fermi-degenerate sea (“coherence factor”  1)

• Ram an electron, create excitations which random walk until 
collected by e.g. a Transition Edge Sensor (TES) 

YH @ sub-eV, Dec. 2016

Heat calorimeter

R

T

TESs used to 
detect microwaves and x-rays 

in astro applications
(e.g. ACT, SPT, SuperCDMS)



Superconductor Cheat Sheet

• Current status?              Not there yet 

• Need to beat noise

• Energy resolution

YH @ sub-eV, Dec. 2016

Reduce temperature 
and volume for 

O(meV) resolution

(See talk by Matt Pyle tomorrow)



Operating temp’:                     )( Volume:                                     ,

Superconductor Cheat Sheet

• Current status?              Not there yet 

• Need to beat noise

• Energy resolution
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Reduce temperature 
and volume for 

O(meV) resolution



Detector Concept
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Basic device idea: 
Large exposure but 

high energy resolution 
= excitation 

concentration

(E.g. SuperCDMS)

Absorber 
Collection fins

TES 5mm

Design by Matt Pyle



Detector Concept
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Basic device idea: 
Large exposure but 

high energy resolution 
= excitation 

concentration

Absorber 
Collection fins

TES

5mm

Design by Matt Pyle

To be efficient: 
absorber size of order 

elastic scattering 
length 

+ 
long-lived excitations 

travel ballistically



Detector Concept
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• Excitation lifetime of 
order a milisecond

• With velocity            , 
plenty of time to 
random walk and 
get absorbed before 
recombine

5mm

Design by Matt Pyle



Detector Concept
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Comments:

• Low energy deposits: 
gapless absorber 
such as a metal

• But better -- metal in   
superconducting 
phase: 

– gap controls the 
thermal noise

– makes excitations 
long lived  easier 
to collect 

Design by Matt Pyle

5mm



Detector Concept
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Comments:

• Initial excitation 
60% quasiparticles, 
40% athermal
phonons

• Design for collection 
of either 

Design by Matt Pyle

5mm
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Comments:

• Initial excitation 
60% quasiparticles, 
40% athermal
phonons

• Design for collection 
of either 

Detector Concept
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Design by Matt Pyle

5mm
• Proof of concept



Rates
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Rates

Scatter off electrons in Fermi-degenerate metal – Pauli blocking
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Fermi-Dirac 
distributionPauli blocking

DM DM

ee



Rates
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100 MeV DM

10 keV DM

light    
mediator

heavy   
mediator



Rates
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100 MeV DM

10 keV DM

Low   
momentum 
dominates

Pauli blocking 
dominates



Results
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Reach
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Superconductors with     
1 meV or 10 meV

threshold

kg-year reach

Ge



Reach
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Superconductors with     
1 meV or 10 meV

threshold

kg-year reach



Absorption vs. Scattering

Not only DM scattering – sensitive to DM absorption too

(Any target!)

YH @ sub-eV, Dec. 2016

DM DM

e e

Absorption sensitive to much lighter DM masses

DM phonons

electronse

DM

(see talk by Tongyan Lin on Friday)



Absorption
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Relate to optical properties of a given material

Aluminum 
optical 
conductivity

[YH, Lin and Zurek, PRD 2016]



Absorption
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[YH, Lin and Zurek, PRD 2016]

Kinetically mixed hidden photon



Superconductors are super awesome.
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Downside?
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Metals are shiny
In-medium effects are substantial – photon picks up mass.

If kinetically-mixed hidden photon mediator:

YH @ sub-eV, Dec. 2016

In-medium 
polarization tensor



Kinetically mixed hidden photon

YH @ sub-eV, Dec. 2016

Absorber with reduced 
optical response 
would be better



Semimetals =~ 3D graphene

YH @ sub-eV, Dec. 2016

[Dolui and Das, 1412.2607]

Topological properties

Semimetals for light DM -- works in progress:
YH, Kahn, Lisanti, Neaton, Zurek….;

Grushin, YH, Ilan, Zurek 

vDM



Optical response (‘photon mass’)
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metalmetal

semimetal semimetal



Summary

• Proposed new class of detectors using superconductors

• Sensitive to O(meV) energy deposits 

keV dark matter via scattering

meV dark matter via absorption

• R&D to lower noise such that O(meV) energies are 
detectable. (Port over everything being done now for 
semiconductors.)
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Prospects
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GeVMeVkeV

WIMP program
(N)

Superconductors (e)

ED> meV

electron-ionization, 
semiconductors (e)

Xenon10 data

ED> eV



Prospects
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GeVMeVkeV

WIMP program
(N)

[YH, Zhao, Zurek 2015; YH, Zhao, Pyle, Zurek 2015; Schutz, Zurek 2014; 
YH, Kahn, Lisanti, Tully, Zurek 2016; Derenzo et al 2016; Essig et al 2016]

Superconductors (e)

Superfluid Helium 
(N)

ED> meV

electron-ionization, 
semiconductors (e)

Xenon10 data

Graphene (e)

Scintillators (e),
Chemical bond breaking 

(N)

ED> eV



Prospects
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GeVMeVkeV

WIMP program
(N)

Superconductors (e)

Superfluid Helium 
(N)

ED> meV

electron-ionization, 
semiconductors (e)

Xenon10 data

Graphene (e)

Scintillators (e),
Chemical bond breaking 

(N)

ED> eV

Semimetals? (e)

[YH, Khan, Lisanti, Neaton, Zurek…; Grushin, YH, Ilan, Zurek;
works in progress]



Thanks!

YH @ sub-eV, Dec. 2016



Backup
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Backgrounds
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(pp neutrinos 
scattering 
on nuclei)

1meV – 1eV: less than 1 event/kg-yr
10meV-10eV: 3 events/kg-yr



Pauli Blocking
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Constraints

• Self-interactions of dark matter

• Stellar emission of light particles

• Kinetic decoupling @ recombination 

• Neff

• Terrestrial: beam dump, (g-2), low energy machines, 
….

YH @ sub-eV, Dec. 2016



Kinetically mixed hidden photon
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Absorber with reduced 
optical response
would be better



Kinetically mixed hidden photon
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Absorber with reduced 
optical response
would be better



Milli-charged DM
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Concentration & Collection
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# bounces until collected  =

excitation collection efficiency  =

macroscopic correlation length, ~micron



Some Constraints

• Self-interactions:

• Decoupling @ recombination:

YH @ sub-eV, Dec. 2016



Some Constraints

• Stellar:

(trapping in supernova releases                  ) 

Kinetically mixed hidden photon 

YH @ sub-eV, Dec. 2016



YH @ sub-eV, Dec. 2016

Talk by Sunil Golwala @ LBNL, June 2015 -- MKIDs



Xenon10 data

Sub-GeV dark matter -- look for electron ionization signals

YH @ sub-eV, Dec. 2016

[Essig, Manalaysay, Mardon, Sorensen, Volansky, PRL 109, 021301 (2012)] 



Scintillators
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[Derenzo et al, 
1607.01009]



Superfluid Helium
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[Schutz and Zurek, 1604.08206]



Chemical Bond Breaking
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[Essig, Mardon, Slone, Volansky, 1608.02940]



Carbon Nanotubes for WIMPs
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[Capparelli et al, 1412.8213] [Cavoto et al, 1602.03216]



Theory: example #1

• Weakly coupled 22:
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[Pospelov, Ritz, Voloshin 2007; 
Feng, Kumar 2008]

DM

DM

thing

thing



Theory: example #2

• Asymmetric dark matter:
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[Kaplan, Luty, Zurek, 2009]

DM

DM

thing

thing

DM

DM



Theory: example #3

• SIMPs: n 2 self-annihilations
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[Carlson, Hall, Machacek, 1992;
YH, Kuflik, Volansky, Wacker, 2014;

YH, Kuflik, Murayama, Volansky, Wacker, 2015]

DM

DM

DM

DM

DM

3 2

See also elastically decoupling dark matter (ELDERs)

[Kuflik, Perelstein, Rey-Le Lorier, Tsai, 2015]



Theory: example #4

• Forbidden channels:
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DM

DM

thing1

thing2

[Griest, Seckel, 1991;
D’Agnolo, Ruderman, 2015]

freezeout
temp’

mass 
difference


